New Insights into the Hendra Virus Attachment and Entry Process from Structures of the Virus G Glycoprotein and Its Complex with Ephrin-B2
نویسندگان
چکیده
Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G) and fusion (F), mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a "latch" to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.
منابع مشابه
Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3.
Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycopr...
متن کاملCrystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design.
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we presen...
متن کاملInhibition of henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3.
Nipah virus (NiV) and Hendra virus (HeV) are newly identified members of the family Paramyxoviridae and have been classified in the new genus Henipavirus based on unique genetic characteristics distinct from other paramyxoviruses. Transgenic cell lines were generated that expressed either the attachment protein (G) or the fusion protein (F) of NiV. Functional expression of NiV F and G was verif...
متن کاملNovel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.
UNLABELLED Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host ...
متن کاملHeparan Sulfate-Dependent Enhancement of Henipavirus Infection
UNLABELLED Nipah virus and Hendra virus are emerging, highly pathogenic, zoonotic paramyxoviruses that belong to the genus Henipavirus. They infect humans as well as numerous mammalian species. Both viruses use ephrin-B2 and -B3 as cell entry receptors, and following initial entry into an organism, they are capable of rapid spread throughout the host. We have previously reported that Nipah viru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012